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NOTICES

When Government drawings, specifications, or other data are
used for any purpose other than in connection with a definitely
related Government procurement operation, the United States
Government thereby incurs no responsibility nor any obligation
whatsoever, and the fact that the Government may have formulated,
furnished, or in any way supplied the said drawings, specifications,
or other data, is not to be regarded by implication or otherwise as
in any manner licensing the holder or any other person or corporation,
or conveying any rights or permission to manufacture, use, or sell
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I. INTRODUCTION

A. THE PROBLEM

An efficient procedure is developed in this report for analyzing

scattering of an electromagnetic-plane wave from a homogeneously loaded

rectangular cavity recessed in a perfectly conducting ground plane. The

analysis is performed for the two-dimensional geometry shown in Figure

1.1. The interest in this work stems in large part from the significant

radar cross section (RCS) contribution of such geometries. Of special

interest are loaded and unloaded notch geometries, in which the width

and depth of the rectangular cavity are small to moderately large in

terms of the wavelength, and also wide shallow cavities in which the

,-i

Figure 1.1. Electromagnetic fields incident on a loaded cavity recessed
in a ground plane.



I
width of the cavity is large in terms of the wavelength while the depth i
is a fraction of a wavelength. The latter geometry is of particular

interest because of its its application to surface wave antennas, and to

arrays of dielectric covered slots. 3
The notch geometry is analyzed by a conventional numerical moment

method technique cast into a particular efficient form. The wide i
shallow cavity, because of its large electrical size, cannot be

efficiently analyzed by the same technique. Thus, a hybrid version of

the moment method is developed for this geometry which results in a

considerable savings of CPU time compared to the conventional moment

method.

I

We consider first some previous work done on problems related to

the scattering of a plane wave from 2-D dielectric loaded notch

geometries. In each of these solutions the moment method [1] was

employed to solve an integral equation involving the equivalent magnetic

current in the aperture. Because of the relatively small electrical 3
size of the notches conventional moment method techniques were used.

Richmond [2] solved the problem of a dielectric loaded notch recessed in 3
a perfectly conducting circular cylinder by expanding the fields in the

dielectric in a set of cylindrical modes and then applying Galerkin's I
method to determine the aperture fields. Kautz, Pathak and Peters [3], 3
as well as Wang [4] considered the geometry of a dielectric loaded gap

2 I'
I



in a thick perfectly conducting screen. They determined the equivalent

magnetic current (in both the upper and lower apertures) by employing

the moment method in conjunction with the multiple scattering method.

By placing an impedance wall in the lower aperture and assigning to it

an impedance of zero, they are able to treat a loaded notch geometry,

However, this method of solution for the notch problem is not very

efficient, primarily because of the added complexity resulting from the

formulation which allows one to treat the more general case of loaded

gaps in thick screens.

We now consider some relevant previous research done on problems

related to loaded wide shallow cavities. Pathak and Kouyoumjian [51

solved the canonical problem of surface wave diffraction by a truncated

dielectric slah recessed in a perfectly conducting gound plane. They

restricted their analysis to a lossless dielectric slab able to support

only the TMo surface wave. The reflected and diffracted fields are

expressed in terms of the geometrical theory of diffraction (GTD) [61.

The surface wave reflection and diffraction coefficients are obtained

from a formally exact solution employing a combination of the

generalized scattering matrix technique (GSMT) [71 and the Wiener-Hopf

procedure [81. This solution, although formally exact, requires

considerable computation. A more efficient solution, which can also

handle a discretely inhomogeneous portion of dielectric near the

truncation, is given by Chuang [91. This solution employs a moment

method solution to an integral equation involving the equivalent

magnetic current at the air-dielectric interface. Recause of the

3



m

semi-infinite geometry, it is necessary to use a hybrid moment method m

[101, [111 solution in which the basis functions are pulses near the

truncation and in the inhomogeneous portion of the dielectric; whereas,

away from the truncation and inhomogeneous regions, the unknown surface

field is expressed in terms of the incident and reflected surface waves

together with the diffracted wave (which vanishes to first order on the m

dielectric interface). The forms of the reflected and diffracted waves

are known and their amplitudes constitute unknowns to he determined. We

can use this solution in conjunction with reciprocity to determine the

lauching coefficient of a surface wave due to a plane wave incident on

the canonical geometry. However, in this situation, reciprocity will m

not yield any information on the surface transition region which extends

a couple of wavelengths (and even farther for a plane wave incident at

grazing angles) from the truncation. This, coupled with the fact that 3
the semi-infinite portion of dielectric must be lossless, limits the

usefulness of that canonical problem in obtaining a solution to the m

problem shown in Figure 1.1. In addition, the solutions of Pathak, et

al. and Chuang are only for an incident TMo surface wave; the other m

polarization is not treated, simply because the TEI surface wave is 3
cutoff for the configuration considered by Pathak, et al. in [51.

Another solution relevant to the loaded shallow cavity problem is m

given by Richmond (121 for scattering of a plane wave from thin

dielectric strips of infinite length; the electric field is parallel to I
the edges of the strip. The field in the dielectric is expanded in a m

sum of forced wave and two surface waves, with the amplitudes of these

I
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waves being determined by Galerkin's method. This solution is relevant

to the loaded shallow cavity problem because of the physical nature of

the basis functions. However, the presence of the perfectly conducting

surface in the case of the shallow cavity yields diffraction effects

that are significantly different from the diffraction characteristics of

the dielectric strip.

Finally, we mention a hybrid moment method solution to a problem

not related to that being considered in this report, but which well

illustrates the computational capabilities of the technique. Srikanth,

Pathak, and Chuang [131 employed a hybrid uniform theory of diffraction

(UTD) [141, [151, -moment method (MM) solution to analyze the plane wave

scattering from an infinite, perfectly conducting semi-circular

cylinder. A mixed basis expansion involving pulses near the edges and

UTD functions elsewhere is used for the unknown current on the cylinder.

The basis function amplitudes are then determined by point-matching.

Numerical results show excellent agreement with conventional pulse basis

expansions, and are obtained in a fraction of the CPU time of the latter

method. We point out, however, that the hybrid UTD-MM is most

applicable to a particular geometry when the diffraction characteristics

(i.e., 1JTD diffraction effects) of the canonical features of that

geometry are well understood.

In this thesis an efficient conventional moment method solution is

presented for the scattering of a plane wave from a notch geometry and a

very efficient hybrid moment method solution is presented for the

special case of loaded wide shallow cavity. For the notch problem the

5



m

equivalent magnetic current in the aperture is expanded in a set of I
parallel-plate waveguide modes in which each mode is an entire domain

basis function across the aperture. The unknown field is only over the

extent of the aperture because the Green's function chosen in the

formulation of the integral equation for the unknown in this geometry is

comprised of two terms, one for a half-space with a perfectly conducting I
ground plane, and the other for a loaded, fully-enclosed, perfectly

conducting cavity. Galerkin's method is used to determine the mode

amplitudes. Only 3-4 modes per free-space wavelength are needed for a

converged solution, as compared to the 10-20 pulses or piecewise

sinusoids per wavelength that are usually necessary if subsectional m

basis functions were used. By using an appropriate form of the cavity

Green's function, the cavity contribution to an individual impedance

matrix element is arranged into a closed-form term plus a highly

convergent summation. In fact, when using the waveguide mode basis

functions, the closed-form contribution alone suffices. This, in I
addition to an evaluation of the half-space contribution employed by

Richmond [12], yields a very efficient matrix fill. Excellent agreement

has been found between the modal basis expansion presented here and a

standard pulse basis solution. In addition, the modal basis solution

was observed to be several times faster than the pulse basis solution. m

Practically speaking, the modal basis solution represents a

cost-effective solution (on a VAX 11/780) to scattering from recessed

rectangular cavities of width < 25 wavelengths and of arbitrary depth.

I
6
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Because of the special interest in dielectric covered antenna

cavities, a separate solution was performed for the wide and shallow

loaded cavity geometry. By 'wide and shallow' it is meant that the

cavity width is greater than several wavelengths and the cavity depth

and loading are such that at most only one surface wave mode exists.

The same integral equation and Green's functions are used as for the

previous discussion, hut a different set of basis functions is employed.

In this hybrid moment method solution the equivalent magnetic current in

the cavity aperture is expanded as a forced wave and two surface waves

(as in [121) plus several additional basis functions that describe

transition effects which are most significant near the cavity edges.

Again, Galerkin's method is employed, but now the number of unknowns

remains almost constant (< 10) regardless of the cavity width. Because

the transition effects are described via a choice of exponential

functions, the computation of the impedance matrix is not significantly

different from that of the modal basis solution. The result is an

extremely efficient solution for the wide and shallow loaded cavity.

Good hackscatter results have been obtained for the magnetic field

parallel to the cavity edges for which case the TMo surface wave always

exists, and when the cavity depth is nearly equal to or less than 0.1

wavelengths. For the other polarization, i.e., when the electric field

parallel to the cavity edges, the lack of a surface wave mode in the

dielectric for shallow cavities causes the hyhrid moment method solution

to he less accurate at grazing angles than the corresponding solution

for the TM polarization. For both polarizations the hybrid basis

7
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solution is far more computationally efficient for wide apertures than

is the modal basis solution.

C. FORMAT

In Chapter II, the integral equations involving the equivalent

magnetic current in the aperture are derived. In Chapter III, the I
moment method solution to the integral equations is described. In

Chapter IV, numerical results for specific examples are presented and

discussed. In Chapter V, the conclusions are stated.

A time convention of exp(jwt) is assumed and suppressed; only here

does t refer to time.

I
I
I
I
I
I
I
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II. INTEGRAL EQUATIONS FOR THE APERTURE FIELDS

A. LOADED CAVITY RECESSED IN A PERFECTLY CONDUCTING GROUND PLANE

I Consider electromagnetic fields incident on the 2-D geometry shown

in Figure 2.1. The source of the incident fields is assumed to be in

region I as shown in the figure. The material in region II is assumed

to be linear, homcgeneous, isotropic and time-invariant and may be

either lossy or lossless. The problem considered here is the

determination of the fields scattered in region I due to a known source

which is also in region I.

I REGION I

X -- 0 x x -a

/W ELECTRIC

REGION 11- CONDUCTOR

I REG ION II

Figure 2.1. An arbtrary loaded cavity recessed in a perfectly

conducting ground plane.

I 9



m

Since the geometry is 2-D, the general vector problem can be easily m

reduced to 2 scalar problems. The incident fields may be decomposed

into 2 polarizations: (1) the electric field vector parallel to the

conducting edge, denoted as the 'soft polarization' (subscript 's')

case, and (2) the magnetic field vector parallel to the conducting edge,

denoted as the 'hard polarization' (subscript 'h') case. Thus, we

define the total scalar fields to be

IE (x ,y)-U

h z
u5h (x1y = IHz(x,y) .(2.1)m

Integral equations, in which the unknown happens to be the electric

fields only within the aperture at y=O and JxJ 4 a, may he derived in a

straight-forward manner by the application of Green's second identity I
[161. The details of this derivation are deferred to Appendix A; here m

we present only the resulting equations and their interpretation in

terms of the equivalence principle. These integral equations are later m

solved by a monent method procedure [Ii using a special set of only a

few select basis functions as discussed in Chapter III. I
For the total fields in region I, we employ the equivalence

principle [161 to replace the aperture by an equivalent magnetic surface

current source distribution just above a perfectly conducting surface 3
which short-circuits the aperture. Then, convolving this equivalent

source distribution with respect to a perfectly conducting half-space U
Green's function, j/2 H(2 ) (kJp-p'I), we find the fields in region I

(y>O) to be

I
10

I
m



I
u (x,y) = u (xy) + u (x,y)

I
-- [j2 H(2)(klI- 'I)J • u(x',y')

f a f dx' 0 P + (2.2)
-au h"I Ir j/ 2 H 2 (kl;-;'l) • (x',y') y'=o+

where u 'r are the incident and reflected fields of the equivalent
h

(short-circuited) problem, and where

IIP- '1 = '(x.x,)2 + (y_y,)2  * (2.3)

For the fields in region II (cavity region) we employ the

equivalence principle to replace the aperture by an equivalent magnetic

surface current source distribution just below the short-circuited

aperture. Then, integrating the equivalent sources over the Green's

I function, Gs, for the short-circuited cavity, we find the fields in
h

region IT (y<O) to he

a s G (xy,;x',y') • u W',y

us  (x,y) 
= f dx' s . (2.4)

h-a 3Iuh_Gh (x,y;x',y') * Sy (x',y') y=0"

The cavity Green's functions, Gs, are discussed in the next section.
hjThe equivalent source distributions of Equations (2.2) and (2.4)

may he readily interpreted as equivalent magnetic currents by noting

I that us(X',y'). 0 is the z-directed aperture electric field for the

TMz or soft case and that -y--(x',y' y'=o is proportional to the

x-directed aperture electric field for the TEz or hard case,

I
II

I



respectively. The equivalent magnetic surface currents are then

obtained from

"eq x n (2.5)

5

where n = y for region I and n = -y for region II. The equivalent

currents for the 2 regions, denoted by MI and MIII are qualitatively

shown in Figures 2.2a and 2.2h for the hard and soft polarizations,

respectively. Note that for the hard polarization the current is

z-directed, while for the soft polarization it is x-directed.

M

(So 0O 000o

(a) Equivalent magnetic currents for hard polarization.

MI1

(h) Equivalent magnetic currents for soft polarization.

Figure 2.2. Equivalent magnetic current sources in the aperture region

of a cavity recessed in a ground plane.

12



To arrive at integral equations in which the unknowns are the

aperture electric fields, we equate the fields as given by Equations

(2.2) and (2.4) in the aperture. Continuity of tangential E and H

fields across the aperture implies the following relations:

u (x,y=O+ ) U (x,y=O-) (2.6a)

uh 1 uh ,
y-y(xy) y=O +  Cr ay(x,y) y=O (2.6b)

ay(x,y) y=O+  Irr TY (x'y)ly=O- (2.6c)

Since we ultimately will calcuate the fields in region I (y>O), the

resulting integral equations are expressed in terms of the aperturL

fields at y=O+ . For the hard polarization we obtain the integral

equation

a '2) auh(x,Y')
f dx' [j/2 H 0(klx-x'I) -E r G h(x'x')]4r y

-a

- -2 u (x,O) .(2.7)

Note that in deriving Equation (2.7) we have used Equations (2.6a)

and (2.6b) to enforce the continuity of tangential H and tangential E,

across the aperture, respectively.

To derive an integral equation for the soft polarization we take

of Equations (2.2) and (2.4) and equate the results in the aperture.

The continuity relations (2.6a) and (2.6c) are applied to ensure

13



continuity of tangential E and tangential H, respectively. The

resulting integral equation is

a a 3/ 2  H(2) (kI -P_'I) 32 : G5 (x.y;x,)
f y2 y y'=O+ r Pr .yay' o_-
-a )y=O++ l ~ -

u U(X',O) dx' = r -
s (2.8)

us -x"V tx u 5(X,y) + u5(x~y) *y=OI-I It
aI

The derivative T was necessary for the enforcement of continuity of

tangential H.

Once Equations (2.7) and (2.8) have been solved for their

respective equivalent source distributions, the scattered fields in

region I may be determined from Equation (2.2) with the short-circuit

terms left out. Since we are primarily interested in the far-zone

fields, the asymptotic approximation to the Hankel function r171 I-e-jkp

H 2 )(kp) it J

is used along with the usual approximate form of IP-P'I F161 3
- P*P in phase

" p in amplitude

The scattered fields are then m

-e, jw4 1-jksino- ejkp  a u ( I- I ( ,/ - j k x ' c os o 1 ) d

u5 (P.) - r'2-k f 1  e3  a uh.(x dx'
h -a -Y ( .

(2.q)

I!



B. LOADED RECTANGULAR CAVITY RECESSED IN A PERFECTLY
CONDUCTING GROUND PLANE

In this section we consider the specific problem to be solved;

namely, the scattering of a plane wave from a loaded rectangular cavity

recessed in a perfectly-conducting ground plane, as shown in Figure 2.3.

For plane wave incidence, the incident fields may be written in the

form

" Eo-0 ejkxcos ' + jkysin '
u5 (x,y)  H (2.10a)
h o

Then for the equivalent short-circuited problem, the incident fields are

still given by Equation (2.10a), whereas the fields reflected from the

short-circuit are given by

u y 0 ejkxcos ' - jkysinW' (2.10b)

h o

E H

Ez, Hz

.1.10 = -y-

Figure 2.3. Plane wave incidence on a loaded rectangular cavity
recessed in a ground plane.

15



A rigorous derivation of the Green's function for the

short-circuited rectangular cavity is given in Appendix B. Here we

present the governing relations and the explicit form of Gs for the
h

rectangular cavity. The Green's function must satisfy the differential

equation

(321 2 + E r11) G5(xy; x ,y') = -6(x-x') 6(y-y ) (2.11a)

for all (x,y) and (x',y') within the cavity, and the boundary conditions

G s

aGh 0 onC (?.lh)

where C is the contour which defines the enclosed cavity and n is the

inward normal on C. For the geometry of Figure 2.3 the cavity is

defined by y=-b, y=O and x=-a, x=a.

We solve Equation (2.11a) by separation of variables and an

application of the boundary condition (2.11b). Note that the boundary

conditions may he applied in two ways: (1) first apply BC's at x=-a,

x=a then at y=-b, y=O; or (2) first apply C's at y=-b, y=O then at

x=-a, x=a.

The first approach may be interpreted as representing the Green's

functions, Gs, interms of the parallel plate waveguide modes propagating
h

in the ± y directions and reflecting from the walls at y=-b, y=O. The

second approach may be interpreted as representing the Gs in terms
h

of the parallel plate waveguide modes propagating in the ± x directions

and reflecting from the walls at x=-a, x=a. For reasons of convergence

16
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(discussed in Chapter Il), the latter approach is used in deriving the

cavity Green's functions. The resulting equations are

I -1 , csc2ya

sG(X,y;x',Y') =-b y [cosy(2a-lx-x'l)-cosy(x+x')l

I tiy 1__Y_
• sin b sin b (2.12a)

-1 1 csc2ya
Gh(x,y;x',y') = z=0 -y [cosy(2a-!x-x'I)+cosy(x+x')l

9.=O

cos bcos h (2.12b)

where

k2cr - ( - 2 b < r - -  "r r) (2.13a)

I £,r)2 bk
b Y -jI(T) I r > Re(e rijr) (2.13h)

and

SI -2 t 0 
(2.13c)

S 1 01

Note that the other representation of the Green's function is entirely

equivalent to Equation (2.12), hut is simply not as efficient for the

geometry and method of solution presented here.

Refore discussing the method of solution to the integral equations,

a note should be made concerning the aperture field edge conditions

inherent in a geometry such as that of Figure 2.3. These edge

conditions are significant since a solution for the aperture fields

should at least approximately meet them. It is noted that the edge

17



behavior can significantly affect the rest of the aperture field

distribution; especially for grazing and near-grazing angles of

incidence.

Hurd [181 considers the problem of field edge behavior for a

conducting wedge in the presence of dielectric wedges. If we are

interested in the edge behavior of the aperture electric fields for the

geometry of Figure 2.3, then the geometry of Figure 2.4 should be

relevant (assuming a non-vanishing cavity). For this qeometry Hurd

derives the edge conditions

Ez = C1 p (2.14a)

EP = C2 tp t ' l  (2.14h) 3
where 3

2 1O 1t cos ((rl .(2.15)

Thus, for finite e r' Ez vanishes at the edge (p=O) and E becomes

infinite at the edge.

I
\P

Z *>

Figure 2.4. Geometry for consideration of edge conditions.
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III. SOLUTION OF INTEGRAL EQUATIONS BY THE MOMENT METHOD

U A. THE MOMENT METHOD

The moment method [] is a powerful and frequently used numerical

technique for solving integral and integro-differntial equations. It is

a method that transforms the integral equation into a matrix equation

which is then solved by matrix inversion.

The integral equations (2.7) and (2.8) are of the form

b
f G(x,x') M(x') dx' = F(x)

a (3.1)

a < x,x' < b

I where G is a known function or operator which constitutes the kernel of

the integral equation; F is a known forcing function, and M is the

unknown function to be determined. Note that for the problem

considered, M is an equivalent magnetic current, F is an incident field

(or its derivative), and G is related to the Green's function. The

I first step in the moment method solution to Equation (3.1) is to expand

the unknown function M(x') in a series of basis functions (also called

expansion functions) with unknown coefficients. The basis functions may

3 be either subsectional, in which each function spans a subsection of thp

domain of M(x'), or they may be entire, in which each function spans the

the entire domain of M(x'). Some examples of subsectional basis

functions are pulses and piecewise-continuous sinusoids. Examples of

I entire basis functions include Fourier series and other modal
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I

expansions, traveling waves, and functions derived from the geometrical U
theory of diffractions (GTD) [6] and its uniform version (UTD) [14]. In 3
this work we expand in a series of entire basis functions:

N
M(x') = Z Dn Mn (x') , a < xe < b (3.2)

n=1 I
where Mn(x) is a basis function and Dn is the corresponding unknown

coefficient. Note that as N + -, (3.2) can yield a formally exact I
representation of M(x'). For N finite but large the representation is 3
approximate, but nearly-exact results are possible. Substituting (3.2)

into (3.1) and assuming that (3.2) is a uniformly convergent expansion, 3
N b
n1 D b n G(x,x') M n(x') dx' = F(x) . (3.3) 3

n=l n a

As it stands, Equation (3.3) is a single equation in N unknowns.

To convert it to a set of N simultaneous equations in N unknowns, a set

of N weighting functions is chosen and applied to Equation (3.3) at N 3
locations in the domain of the weighting function. Thus the second step

in the moment method solution is the selection of a set of weighting 3
functions (also called testing functions).

Let {w(x), a < x < b1 be a set of N weighting functions. Then, we

may write the weighted equations as

N b b
Dn f f G(x,x') Mn (x') Wm(x) dx' dx

n=1 a a

f F(x) Wm(x) dx ,m = 1,..., N. (3.4)
a

I
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Examples of simple and effective weighting schemes are point-matching

and Galerkin's method. In point-matching the weighting functions are

simply delta functions,

Wm(X) = 6(x-xm) , a < xm < b (3.5)

In Galerkin's method the weighting functions are identical to the basis

functions, i.e.,

Wm(x) = Mm(x) . (3.6)

Equations (3.5) and (3.6) separately constitute the only choices of

weighting functions considered in this work.

Equations (3.4) may be expressed in matrix form as

[Zmn] [DRn] = [Vm] (3.7)

where

Zmn = I f G(x,x') Mn(x') Wm(x) dx' dx (3.8)
a a

b
Vm :f F(x) Wm(x) dx . (3.9)

a

INote that [Zmn] is the so-called impedance matrix and [Vm] is the

voltage matrix. Finally, the unknown coefficients are determined from

Dn] = [Zmn l - 1 (Vm] . (3.10)

I
I
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The accuracy of the results depends on the choice of both basis

functions and weighting functions. The basis functions should be chosen

so that Equation (3.2) can approximate the unknown current M(x') fairly U
well. The edge conditions and G(x,x') may place restrictions on the

useful choice of basis functions. The same restrictions may apply to

the weighting functions. Fortunately the moment method is a variational 3
procedure DIl and often yields good results for a wide range of basis

and weighting functions. I
The moment method is generally considered to be a low-frequency 3

technique limited at present to objects < 10 wavelengths for two

dimensional problems. This limit is a computational one and is due to 3
the large number of unknowns required to accurately model the currents

on large, complicated objects. For subsectional basis functions (such 3
as pulses) typically 10-20 unknowns per wavelength are neessary. 3
Appropriate entire basis functions can reduce this by a factor of 2 or

more. When the number of unknowns exceeds several hundred, the time and 3
cost required to invert the impedance matrix becomes exhorbitant and the

technique is no longer attractive. I
In problems where one can identify the dominant physical mechanisms

contributing to the unknown current, a hybrid moment method [101,F111,

can be a powerful tool. Basis functions are chosen which incorporate 3
the mathematical form of the known physical mechanisms. More

traditional basis functions (e.g. pulses) may be used in locations 3
where the physics is not so well understood. The use of these hybrid or

traveling wave/GTD basis functions can yield efficient high-frequency

1
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solutions at a cost of increased mathematical complexity. Many

excellent examples of this hybrid or traveling wave/GTD approach to the

moment method exist in the literature as mentioned earlier.

B. SOLUTION FOR RECTANGULAR CAVITIES OF NARROW
TO MODERATE WIDTH AND ARBITRARY DEPTH

In this section we present a solution to the problem depicted in

Figure 2.3 which is valid for either loaded or unloaded rectangular

cavities of narrow to moderate width and arbitrary depth. This solution

requires approximately four unknowns per (free-space) wavelength across

the aperture, and is therefore limited to cavities of width - 25X or

less.

Entire basis functions are used with a Galerkin weighting scheme.

The basis functions are chosen to be the transverse portion of the

modes, both propagating and evanescent, of a parllel plate waveguide

with plates at x=-a and x=a. This choice of basis functions was also

Imade by Wang [4] in one part of his solution to the scattering by a slot

in a thick conducting screen.

The modes supported by a parallel plate waveguide are easily

determined from the 2-D scalar wave equation and the boundary conditions

at the walls. Expanding the unknowns in the integral Equations (2.7)

Iand (2.8) in terms of the transverse portion of these modes, we obtain

for the hard and soft polarizations, respectively,

au h  N nrS- (x') : 0 Dn cos T (a-x') (3.11)
In=
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I
N nU

Us(x = Dn sin f (a-x') (3.12)
n=1

for -a < x < a

Note that the D. in (3.11) and (3.12) are in general different. U
Applying Galerkin's method we determine the impedance and voltage 3

matrices from Equations (3.8) and (3.9). For the case of hard

polarization the results are

a a nw mwr
Zmn =_f f G(x,x') cos Tj (a-x') cos - (a-x) dx'dx (3.13)

m -a -a
a jkxcos¢' n

vm = -2Ho f e cos j (a-x) dx , (3.14)

where G(x,x') equals the quantity in brackets on the LHS of Equation

(2.7). Similarly, the results for the soft polarization are

a a nir mw
Zmn = f f G(x,x') sin T (a-x') sin T (a-x) dx'dx (3.15)

-a -a m

Vm = 2jksino' E0-a ekxcos sin (a-x) dx , (3.16)

Where G(x,x') equals the quantity in brackets on the LHS of Equation

(2.8). Note that the impedance matrix is symmetric. m

The integrals in the expressions for Vm are easily evaluated; 3
however, the double integrals in the expressions for Zmn are

considerably more challenging. The mathematical details of this 3
evaluation are given in Appendix C. The double integrals of the Hankel

function terms in the total Green's functions are reduced to single m

integrals by a rotation of coordinates (the so-called Popovich

24
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transformation). The single integrals are evaluated over the initial

part by numerical integration and the remaining part is evaluated

analytically by using the large-argument form of the Hankel function.

The double integrals of the cavity Green's functions, given by

I Equations (2.12) and (2.13), can be evaluated in closed form, leaving

infinite sums. Specifically for this form of the cavity Green's

functions, portions of these infinite sums can be summed into closed

form. For the more conventional choice of Green's functions, as given

by Equations (B.22) and (B.23), such closed-form terms were not

obtained. This fact accounts for the significantly faster convergence

for the chosen cavity Green's functions. Only a few evanescent terms

are required to achieve numerical convergence of the remaining portion

of the sum.

We point out that the current representation given by Equation

(3.12) satisfies the edge condition (2.14a) in the sense that (3.12)

goes to zero for Ix'la. Actually each basis function in (3.12)

vanishes at the edges of the aperture, a fact which greatly simplifies

the evaluation of Zmn. For the hard polarization the current

representation given by Equation (3.11) will not go to infinity at the

aperture edges as required by (2.14b), assuming a finite value of N.

However, (3.11) will approximate the edge condition well enough to yield

accurate results even with only four unknowns per wavelength.

Finally, the far-zone scattered fields in region I (y>O) are found

from Equations (2.9), (3.11) and (3.12) to be
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e-j1/ 4  k sin 0 e-jkp

N jnit 12 nt nir
e sin(kcoso -T)a e- n /2 sin(kcos + T)an = 0 n ii T n it

1 kcoso - 2 kcoso + 3a
(3.17) U

C. SOLUTION FOR RECTANGULAR CAVITIES
OF LARGE WIDTH AND SMALL DEPTH I

In this section we present a solution to the problem depicted in

Figure 2.3 which is valid for loaded rectangular cavities of large width m

and small depth. The number of unknowns in this solution is independent 3
of the width of the aperture, but can depend on the depth of the cavity.

By small depth it is meant that the dielectric portion of Figure 2.3 3
will support at most one surface wave mode.

In the previous section, a solution involving a current expansion m

in parallel plate waveguide modes was presented. This solution will 3
also work for the present case of wide, shallow cavities, but it will

require many unknowns (3-4 per wavelength across the aperture). By m

considering the physics of the wide, shallow cavity we can arrive at a

more efficient set of basis functions. I
Consider the grounded dielectric slab shown in Figure 3.1. This

structure can support surface waves, incident and reflected geometrical

optics fields, plus other types of waves which we are not concerned with

here. For the case of plane wave incidence the total field in the

26 1
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region above the slab is simply the incident plus reflected geometrical

optics terms (since a plane wave cannot excite surface waves in an

infinite dielectric slab):

u (xy) : { Eo 1 • [ejk(Y+b )sino' + r s e - j k(y+b)slno']
H h0

ejkxcoso' (3.18)

where the reflection coefficient is [191

j er up r sine' + h • tan (kbh)

h = j E r lir sin' - h - tan (kbh) (3.19a)

j sine' - ot (kbh)

= j sin' - n * cot (khh) (3.19b)

and

h e r Wr - sin2 ' (3.20)

0 0-i

0 X y O

r , Lr
~y--- -b

GROUND PLANE

Figure 3.1. Scattering from an infinite dielectric slab on a ground
plane.
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m

Note that the reflection coefficient has a magnitude of unity, as we I
would expect for an incident plane wave. m

If we truncate the slab of Figure 3.1, then the diffration of an

incident plane wave at the ends of the slab will excite surface waves. 5
The z-components of hard and soft normalized surface waves are 161

-e - ay ' j Bx , y 0 (3.21a) mUh = coscl(y+b) -jax
u cosl * e , 0 ) y > -b (3.21b)

- e y ' j x , y > 0 (3.22a) mus =)sinl(Y+b) -j~x m3?b_ sinaIb • e , 0 > y -b , (3.2b)

where 'hard' and 'soft' are as defined by Equation (2.1). The surface 3
wave propagation constant, 8, is determined from

a 1 tan a1h = Cr (3.23a) 3
" cot aib = P ra (3.23b) 3

for the hard and soft polarizations, respectively, where 3
2= 82 - k2  (3.24a)

a12 = k2 
r ir - 82  (3.24b)

Substituting Equations (3.24) into (3.23) yields a transcendental m

equation in B, which is then solved by the Newton-Raphson method. From 3
Equations (3.23a,b) it may be shown that the first surface wave mode for

the hard polarization has no cutoff frequency. This is not true for the 5

m
2R I

I



soft polarization. Thus even a very thin grounded dielectric slab will

support a surface wave only for a hard-polarized incident field.

We now return to the geometry of Figure 2.3 and consider a suitable

choice of basis functions. From the above discussion it seems

reasonable to assume that a geometrical optics type of field (also

called a forced wave inside the dielectric), such as Equation (3.18),

will make a significant contribution to the aperture field. In

addition, if we assume the dominant surface wave mode is present, then

terms such as (3.21) and (3.22) are also important. Thus far, our

expansion for the aperture electric fields is

u h -I
u5Y Wx = 1 ejkxcos' + D2 e jax + D 3 ej Bx  ; lxl<a (3.25)

-us W-x)_

where B depends on polarization. The coefficients D2 and D3 include the

multiple reflections of the surface waves from the end walls at x=-a and

x=a. Richmond '12] employed a very similar expansion in his moment

method solution to scattering by a thin dielectric strip (Ez

polarization only).

For this prohlem considered here the current representation (3.25)

does not properly account for the aperture physics near the end walls.

The transition region exists between the edges of the aperture and the

region where the surface waves become established. This transition

region typically extends about one wavelength into the aperture from the

edges, except for near grazing angles of incidence where it could
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possibly extend over the entire aperture region if the aperture is only I
moderately wide.

To account for the physics of the transition regions additional

basis functions were chosen which were entire but of importance only 3
near the edges. To keep the mathematical complexity to a minimum, a set

of exponential functions which decay away from the edges were chosen.-3

Thus the current expansion now becomes

!I-Y (x) ejkxcoW + -ja(a-x) + ejB(a+x)

_u (x)_ = fl~ e ~ + D2 e + 03e

- u s W +1 0 ~jq~(a) +0 -jq(a+x)+ D4 dJ+ D5 e

+ D6 d-jq2 (a-x) -Jq2 (a+x) +
0 7 e + ... (3.26)

where the qi are empirically determined complex numbers with a negative 3
imaginary component. A discussion of suitable values for the qi is

given in the next chapter; typically there are several transition terms. 3
Note that the surface waves and the transition terms in Equation (3.26)

are written in a form that indicates that these terms emanate from the I
edges of the aperture, whereas the forced wave term is not written in 1
such a form.

Recall that us(x) must satisfy the edge condition (2.14a). Thus, 3
for the soft polarization, Equation (3.26) must he set equal to zero at

x=-a and x=a. Upon doing this we may then solve for two of the N I
unknown coefficients in terms of the remaining coefficients, thus 3

3I30!
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reducing the number of unknowns from N to N-2. The resulting form for a

given basis function for the soft polarization becomes

MnW =a nejO(ax) j(hna+fnx) + b e-jQ(a+x) (3.27)

where hn and fn are the appropriate values of kcosq, 0, and qi shown in

Equation (3.26), and 0 is an empirically determined complex number with

a negative imaginary component (like the qi), and where

a n = -2j e j(hn-Q) a sin(fn +O)a (3.28a)I 1-e 4j~a

j(hn-0) a sin(fn

bn = -2j e o -e_4jOa (3.28h)bn :-I-e (,2h

A value of 0 is chosen so that the basis function given by Equation

(3.27) goes to zero rapidly near the edges of the aperture; a discussion

of actual numerical values is deferred to the next chapter. The

corresponding lorm of a given basis function for the hard polarization

is

j (hna+fnX)
M (x) = e . (3.2q)

Apnlying Galerkin's method we determine the impedance and voltage

mat-ices from Equations (3.8) and (3.). For the hard polarization the

results are

a a j(hna+fnx') j(hma+fmx) dxm dx (3.30)IZmn = f I ((x,x') e e d'x(.0

-a -a
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Vm = -2H 0 f ej kxcos ' ei(hmalfmx) dx (3.31)-a

where G(x,x') equals the quantity in brackets on the LHS of Equation 1
(2.7). Similarly the results for the soft polarization are 3

a (ha+fnx) eJ~~')

Zmn = a f G(x,x') [an e-jO(a-x') + e nn + n-a -a

[am ej(a-x) +ej(hma+fnx) +bm e j(a+x) ] dx'dx (3.32) 3

vm  -2jk sin' E. fa ejkxcos•'. [am e-jo(a-x) +ej(hma+fmx)

+ bm e jO (a+x) ] dx (3.33) m

where G(x,x') equals the quantity in brackets on the LHS of Equation I
(2.8). Note that the impedance matrix is symmetric. 3

Again the expressions for Vm are easily evaluated. Comparing the

above expressions for the impedance matrix elements with those of the 3
waveguide mode current expansion, given by Equations (3.13) and (3.15),

we see that in both cases the basis and weighting functions may he I
expressed as exponentials. Thus, the evaluation of Equations (3.30) and 5
(3.32) is not fundamentally different from that of Equations (3.13) and

(3.15).

Finally the far-zone scattered fields in region I (y>O) are found

from Equations (2.9), (3.27) and (3.29) to be I

3
m
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-e r/4 e-jkPN-
e N-2)/2 -~

u5 (c,, ,wik (-ksinfln= n-*2*

3-sin(kcose+Q)a jhna sin(kcoso+f n )a

kcoso+o +e k Cosf n

+I -J sin(kcoso-Q)a ko-Q(3.34)

nIcs-

3 for the soft polarization, and

I=-e~ j / e -jkp 2N-2 sin(kcos +f n)aI
uh(p,4f) 22r = ehn kcos4+fn

(3.35)

for the hard polarization.
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IV. NUMERICAL RESULTS AND DISCUSSION

A. CAVITIES OF ARBITRARY DEPTH AND NARROW TO MODERATE WIDTH
RECESSED IN A GROUND PLANE

In this section we consider the EM scattering from loaded or

unloaded cavities of narrow to moderate width and recessed an arbitrary

distance in a ground plane. By "narrow to moderate width" it is meant

that the aperture width is < 10 X, where X is the free-space wavelength.

Before discussing the numerical results in this section, it is

important to introduce an explanation of the titles, labels and variable

names that accompany each of the computer plots pertaining to the

numerical calculations presented below.

TITLES OF PLOTS

PMH = pulses/point matching solution for hard polarization

NOTCHH, NOTCHS = hybrid basis solution for hard, soft
polarization

(ignore the .TEST appearing in some titles)

COORDINATE LABELS

BACKSCATTER = monostatic backscattered field E, or Hz)
magnitude multiplied by the factor ViT, where k is
the free-space wavenumber.

MAGNITUDE, PHASE = equivalent current magnitude and phase

PATTERN MAGNITUDE = bistatic scattered field (Ez or Hz)
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VARIABLES COMMON TO ALL SOLUTIONS

WIDTH = aperture width, A (free-space)

DEPTH = cavity depth, X

ERR = Re (cr ) in the dielectric loading of the cavity

ERI = Im (Cr) in the dielectric loading of the cavity

IIRR = Re (ur) in the dielectric loading of the cavity

URI = Im (ur) in the dielectric loading of the cavity

PHP = .', 00 ' < 900 (€'=900 => normal incidence.)

VARIABLES SPECIFIC TO A SOLUTION

PMH = MM solution using pulse expansion and point matching
in the aperture only for the hard case

NMODE = Number of modes in the cavity Green's function

(modes propagating in ± y direction)

PW = Pulse width, X

NI,N2 = Number of pulses counting from x=-a, x=+a.

NOTCHH,NOTCHS = Hard and soft case MM solutions using modal
expansion in waveguide aperture respectively

NZ1,NZ = Number of unknown modal basis functions for hard,

soft polarization

NMODF = Number of terms in reduced form of cavity Green's

function (modes propagating in ± x)

DX = 2 * integration step of numerical portion of
integration, X
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EMAVH3,EWAVS = Hard and soft case MM solution using a hybrid
traveling wave expansion in the aperture, respectively. I

NMODE = Same as for NOTCHH,NOTCHS

DX = Same as for NOTCHH,NOTCHS 3
NFW = Number of forced wave basis functions

NSW = 112 number of surface wave basis functions I
NEW = 1/2 number of transition term basis functions

We first consider results for the hard polarization. Figure 4.1 I

compares a pulse/point-matching solution for the monostatic scattered

magnetic field (Hz) from a loaded recessed cavity of width=lX, I
depth=0.1X to the Galerkin solution employing entire waveguide mode

basis functions (Chapter III, Section R). The pulses/point-matching

solution employs 20 pulses of width=0.05X and 10 modes in the cavity 3
Green's function (using the form given by Equation (R.22h); the CPU time

on a PRIME computer was 49 seconds. The modal basis solution employs 5 3
waveguide modes, no modes in the expression for ZL of (C.12) (the

closed-form portion of ZL proved to be sufficient), and a numerical

integration step of 0.05X; the CPU time was 15 seconds. Note that both j
solutions were verified to have converged. Similar results are given in

Figure 4.2 for a depth=1O.1X. Again, there is good agreement between 3

I
I
I
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the solutions. Note that even for the deep cavity, no modes were

required for the computation of ZL-

Now consider the soft polarization. Figures 4.3 and 4.4 show the

monostatic scattered electric field (Ez) computed from the modal basis

method for cavities of depth = 0.1A and 10.1A, respectively. This

solution employs 4 waveguide modes, no modes in the expression for ZL

(again, the closed-form portion of ZL was sufficient), and an

integration step of .05X. Bistatic scattered field equivalent currents

and far-field patterns computed with the modal basis solution were

compared with a moment method solution [4] employing piecewise

continuous sinusoids and Galerkin's method. Good agreement was observed

for the two solutions for normal incidence. There appears to be some

question as to the use of the computer codes in [4] for grazing angles;

hence, this comparison has not been made at this time.

B. LOADED SHALLOW CAVITIES OF LARGE WIDTH
RECESSED IN A GROUND PLANE

In this section we consider scattering from loaded shallow cavities

of large width (C 5 X) recessed in a ground plane. By "shallow" it is

meant that at most one surface wave is supported in the dielectric.

This condition places constraints on the depth of the cavity and the

electrical properties of the dielectric medium according to Equations

(3.23) and (3.24). Table 4.1 shows surface wave propragation constants

as a function of dielectric thickness (i.e., cavity depth) for a

dielectric with Cr2 .5, ur=1.0. A dash (-) indicates that a surface wave

is not supported.
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TABLE 4.1

HARD AND SOFT SURFACE WAVE PROPAGATION CONSTANTS
FOR A GROUNDED DIELECTRIC WITH E =2 5 v=1 .0

AS A FUNCTION OF DIELECTRIC THICKNESS

b ah  as

.05 X 6.399 X-1  --

.10 6.789 --

.15 7.442 --

.20 8.105 6.288

.25 8.599 6.630

Figure 4.5 compares a pulses/point-matching solution to the modal

basis solution for the monostatic scattered magnetic field from a loaded

recessed cavity of width=5A, depth=.05X, Er=2.5. The

pulses/point-matching solution employs 50 pulses of width=.10X and 40

modes in the cavity Green's function; the CPU time was 9 minutes, 47

seconds. The modal basis solution employs 21 waveguide modes, only the

closed-form term in ZL, and an integration step of .05x; the CPU time

was 1 minute, 10 seconds. The modal basis solution was observed to

converge. Due to lack of disk space we were unable to verify the

convergence of the point matching solution.
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Also shown in Figure 4.5, at ten degree intervals, is the solution

obtained using the basis functions discussed in Section C of Chapter I
I1. This solution employs a forced wave, two surface waves, and 8 U
transition terms for a total of 11 basis functions, and is valid for any

cavity width larger than a few wavelengths. The surface wave 3
propagation constant for this geometry is given in Table 4.1. The

transition term "propagation" constants were chosen to be of the form I
qi = k - js i  , (4.1)

where the qi are defined in Equation (3.26), k is the free-space

wavenumber, and the si are empirically determined attenuation constants. I
It was found from numerical experimentation that allowing the si to take 5
on the four integer values

si = 5,6,7,8 , (4.2) 1
resulted in accurate monostatic scattered fields for shallow cavities.

Actually, the nonostatic scattered field is somewhat insensitive to the I
specific qi chosen, as long as the corresponding basis functions are 3
insignificant a wavelength or so from the aperture edge. The CPU time

for the points shown in Figure 4.5 was I minute, 16 seconds, which is 3
similar to the CPU required for the modal basis solution. Even though

fewer unknowns are required in the hybrid basis solution (11 versus 21 1
in the modal basis solution), one of the basis functions, the forced 3
wave, is a function of the angle of incidence, as can be seen from

Equation (3.26). Thus, a row of the impedance matrix must be recomputed 3
and the resulting matrix inverted for each new angle of incidence. In

the modal basis solution the impedance matrix is computed and inverted U
42
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only once. The advantage of the hybrid basis solution is, of course,

that only 11 unknowns are required regardless of cavity width.

Figures 4.6 and 4.7 compare the hybrid and modal basis solutions

for the equivalent magnetic aperture current and bistatic scattered

field pattern for a plane wave normally incident on the geometry of 3
Figure 4.5, except that the cavity depth=O.10x. The required CPU for

the modal basis solution was 54 seconds; versus 28 seconds for the I
hybrid basis. Figures 4.8 and 4.9 make the same comparison for grazing 3
incidence (€'=O°). Note that excellent agreement between the two

solutions even for grazing incidence. 3
Figures 4.10 to 4.13 compare the monostatic scattered field

obtained from the hybrid basis solution at ten degree intervals to the m

modal basis solution for cavity depths of .1OX, .15X, .20X, and .25 X. 3
Good agreement is obtained everywhere except for the grazing incidence

region for a depth of .25X, the largest depth which was tried. Such 3
variations might yield good results for a particular geometry, but would

not always apply to other geometries. Thus, a consistent method for I
choosing exponential-type transition terms was not found for the deeper 3
cavities, i.e., for depth=.20A and .25X. In short, an accurate and very

efficient hybrid solution for the hard polarization was found for 3
cavities with depths less than .15X and of arbitrary width.

Consider now the soft polarization results of plane wave scattering I
from the same geometry considered in the above hard polarization

analysis. From Table 4.1 one sees that surface waves do not exist in

I
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the thin dielectrics for the material properties Er= 2.5, ur=l. 0.

However, a transition surface wave type of field does exist under cutoff

conditions. From plots of the equivalent currents in the aperture it is

readily apparent that this field has the propagation constant of free

space and becomes more significant as cutoff of the dominant surface

wave is approached. For a depth of .15X and .OX it is less obvious.

For this reason a "surface wave" with propagation constant=k will be

employed in the hybrid basis solution for the recessed cavity of

depth=.15X, even though the dominant surface wave is actually cutoff.

Figure 4.14 compares the hybrid basis solution to the modal basis

solution for the monostatic scattered electric field from a loaded

recessed cavity of width=5X and depth=.05x. The modal basis solution

employs 20 modes; the CPU time was I minute 7 seconds. Because of the

fundamental similarity between the modal basis solutions for the hard

and soft polarizations, the CPU times are nearly identical for a given

number of unknowns. The hybrid basis solution employs only a forced

wave. However, recall that additional exponential terms are employed so

that each basis function will meet the edge condition. Thus, for a

basis function of the form given by Equation (3.27), a value of 0 must

he chosen so that the basis function will go to zero in an appropriate

manner as Ix!+a. A suitable form for 0 is

0 = k - js . (4.3)

where k is the free-space wavenumber, and s is determined empirically.

IThe value of s used in Figure 4.14 and the following figures is
I s 6 (4.4)
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However, numerical experimentation has shown that the hybrid basis

solution is quite insensitive to specific value of 0. Any choice of 0

which takes the basis function to zero within a fraction of wavelength

i of the edge is suitable. Note that the exponential transition terms

used in the hybrid basis solution for the hard polarization were not

found to be useful for the soft polarization, except as a means of

enforcing the edge condition.

Because there is only one unknown in the hybrid basis solution

shown in Figure 4.14, the CPU time is only 20 seconds.

The agreement between the hybrid basis and modal basis solutions in

Figure 4.14 is very good except near grazing incidence. This disparity

is more clearly illustrated in the next set of figures. Figures 4.15 to

4.18 compare the equivalent aperture currents and bistatic scattered

field patterns of the two solutions for angles of incidence o'=900 and

i r'=i 0' and a cavity of depth=.10X. Again, only the forced wave is

employed in the hybrid basis solution, and 20 modes are employed in the

modal basis solution: the CPU times are 8 seconds and 50 seconds

respectively. The agreement for o'=90' is very good, although from

Figure 4.15 one can see that a weak field is present in addition to the

forced wave portion of the total field. This additional field is more

significant for s'=10', as can be readily seen in Figure 4.17. The

corresponding histatic scattered field patterns, shown in Figure 4.18,

display good agreement except for the region of grazing incidence,

o'<300. Attempts to improve the solution in this region by the addition

of a surface wave with propagation constant k and/or the inclusion of

I exponential transition terms were unsuccessful.
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Figures 4.19 to 4.22 show the monostatic scattered field results

for cavities of depths .10A, .15A, .20A and .25 X. Inaccuracies in the

grazing incidence region are plainly visible in Figures 4.19 and 4.20.

Inclusion of a surface wave type of field in the hybrid solution for i
b=.15X improved the solution which employed a forced wave only,

especially for normal incidence. However, the grazing incidence

solution was only slightly improved. The hybrid solutions for b=.20X

and .25X employ a forced wave and true surface waves, since the dominant

surface wave mode is no longer cutoff. Figures 4.21 and 4.22 show the 3
poor agreement between the hybrid and modal basis solutions.

Examination of the histatic scattered field patterns for these

geometries shows fairly good agreement for normal incidence, hut very i

poor agreement for grazing incidence. Attempts to improve the hybrid

solution by the use of transition terms occasionally yielded better i

results. However, as was true for the hard polarization, a consistently

accurate set of basis functions was not found for the deeper cavities. i
In short, a fairly accurate and very efficient hybrid solution for the

soft polarization was found for cavities with depths < .10) and of

arbitrary width. 3
An alternative hybrid scheme for both the hard and soft

polarizations would be to use the proper transition functions associated I
with the phenomenon of edge diffraction within the surface wave i

transition region. Such functions, involving Fresnel integrals and

terms of the type p-3/ 2 , could be determined from asymptotic study of 3
an appropriate canonical problem. However, use of these transition

i
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I
i functions in a hybrid moment method solution would greatly increase the

CPU required to compute the Zmn, assuming Galerkin's method is employed.

- Use of point-matching may alleviate this problem.

Next, we consider the effects of loading on the scattering patterns

I of the wide shallow cavities. Comparisons will be made using only

results from the modal basis solution. Considering first the hard

polarization, Figures 4.23 through 4.27 show the backscattered field

3 magnitude for a cavity of width=5X and depth=.lX and for various

dielectric loading; in all cases ur=l. These figures should be compared

3 with Figure 4.10 for which cr=2.5 and for which a significant surface

wave is present. The backscatter of an unloaded cavity, shown in Figure

4. 3, shows significantly less backscatter along grazing angles due to

3 the lack of surface wave. A lossy dielectric, cr= 2 .5-j. 25 , is shown in

Figure 4.24. Again the most significant differences compared to Figure

3 4.10 occur for grazing angles. Figure 4.25 is for a dielectric constant

Elr5 and displays no significant differences in backscatter. However,

F ures 4.26 and 4.27 are for larger dielectric constants, cr=l0 and

3 r=15, respectively, and show a pronounced decrease in backscatter along

g:.izing angles as compared with Figure 4.10. This effect is due to the

3 destructive interference of surface wave reflections and will,

therefore, vary with the cavity width.
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Figure 4.28 shows the backscatter from a cavity of width=9.5X and

depth=.25k with a dielectric constant Er=2.5. This geometry is easily I
shown to be surface wave resonant (On=8.599 from Table 4.1); however, 3
this is the case is readily apparent from the plot. Figure 4.29

dramatically displays the effect of adding loss to the dielectric, 3
cr= 2 .5-j.25, thus removing the resonance by both altering the resonant

frequency and damping the surface waves. I
Consider now the effects of loading on the backscatter patterns for

the soft polarization. Figures 4.30 through 4.34 are for a cavity of

width=5X and depth=.1I and for various types of dielectric loading. 3
These should be compared with Figure 4.19 for which cr= 2.5 and for which

I
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a significant surface wave is not present. Figures 4.30 and 4.31 show

the backscatter of an unloaded cavity and of a cavity containing a lossy

dielectric with £r= 2.5-j.25 , respectively. Neither of these show much

difference when compared with Figure 4.19 simply because of the lack of

surface wave in each case. The same rationale applies to Figure 4.32

for which £r= 5 , even though the surface wave is only slightly below

cutoff. For Figure 4.33, for which er=lO, the surface wave mode (or

modes) are above cutoff as is readily apparent from the backscatter

pattern. Figure 4.34, for which cr=15, shows a decrease in backscatter

compared with Figure 4.33 for near-grazing angles, although not nearly

as pronounced as was observed for the hard polarization.

Figure 4.35 shows the backscatter from an unloaded cavity of

width=5X and depth=.25X. Comparing this with Figure 4.22, for which

cr= 2.5 and for which a surface wave is present, the significance of the

surface wave at grazing and near-grazing angles is readily apparent.
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V. CONCLUSIONS 3
Two efficient moment method solutions have been developed for the

scattering of an electromagnetic plane wave from a 2-0 rectangular I
cavity recessed in a perfectly conducting ground plane and loaded with a 3
homogeneous lossy or lossless dielectric. Integral equations for the

equivalent magnetic current in the cavity aperture are solved by 3
Galerkin's method for the hard and soft polarizations independently.

One of the solutions termed a modal basis solution, expands the I
equivalent magnetic current in a set of parallel plate waveguide modes

which constitute entire domain basis functions over the whole aperture.

This solution requires 3-4 unknowns per aperture wavelength, versus

10-20 unknowns per wavelength when using pulses or piecewise sinusoids.

In addition, a portion of the cavity Green's function contribution to I
the impedance matrix elements was summed into closed form resulting in a

highly convergent representation. When compared with a

pulses/point-matching solution for the hard polarization, the modal 3
basis solution was found to be several times as efficient without loss

of accuracy. At present, this solution is limited to geometries with 3
aperture widths < 25X (requiring 75-100 unknowns) as a matter of

computational efficiency; the required CPU is independent of cavity

depth and loading. 3
A second moment method solution, termed a hybrid basis solution,

was developed specifically for wide shallow cavities with enough loading

to support at most one surface wave mode. The hybrid basis solution
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employs entire basis functions and Galerkin's method, as does the modal

3 basis solution, but expands the equivalent magnetic current as a sum of

forced wave, two surface waves (if present) and several transition

waves. The transition waves are exponential functions chosen to be most

3 significant near the edges of the aperture in the surface wave

transition region. This representation was found to yield accurate

3results for the hard polarization for cavity depths < .10A and widths >

several X with the use of just 3-4 transition waves. Thus, since only

Iabout 10 unknowns are required for any aperture width and the basis

functions are not significantly more complicated than are the modal

basis functions, the hybrid basis solution is an extremely efficient

solution for wide shallow cavities. For the soft polarization the

surface wave mode was not present for cavity depths < .IOX and for the

Uchoice of dielectric material considered. Also, the transition waves

3were found to not be appropriate for this polarization. Thus, only the

forced wave plus two exponentials, chosen so that the forced wave would

3meet the proper edge condition, made up the hybrid basis functions.

Fairly accurate results were obtained for cavity depths < .10 X and

Uwidths > several X, except near grazing angles of incidence. Again,

thi hybri;. basis solution is extremely efficient.

The analytical techniques presented here should prove useful in the

3design of surface wave antennas and in determining the RCS contribution

from such structures as well as from loaded and unloaded notch

structures. Future research could include modification to the cavity

Green's function to accomodate, for example, impedance side walls.
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Improvements to the hybrid basis solution, specifically, may be made by

choosing more appropriate transition wave basis functions. Such basis I
functions may be obtained from a UTD analysis of an appropriate 3
canonical surface wave diffraction problem, or perhaps by using many

pulses or piecewise sinusoids near the edges of the aperture. 3

I
I

I
I
I
I

I
I
I
I
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SA PAPPENDIX A

DERIVATION OF THE INTEGRAL EQUATIONSI
The integral Equations (2.2) and (2.4) for the region I (y>O) and

region II (y<O) fields, respectively, may be derived from Green's second

3 identity for scalar fields and the equivalence theorem. In two

dimensions Green's second identity has the form [16]

S i- "n d =  (*V20 - OV2*) ds (A.1)

L s

where p and € are scalar fields and s is a surface bounded by the

* contour L. Note that this identity is a statement of reciprocity for

the two fields.

Let * be the scalar field, us, defined by
h

I E
us  (5) = (A.2)
h Hz (p)

and let be the appropriate Green's function, Gs(5,5'). To derive
h

integral equations from (A.1) we must consider the wave equations and

boundary conditions satisfied by u and G. The scalar fields satisfyI
(V2 + k U = (A.3)

h jWC Mz

I
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where Jz, Mz are impressed sources located in region I as shown in

Figure A.1. On perfect conductors, i.e., paths Lc and C, the fields

must satisfy the boundary conditions 3
u ' s L o ( A .4 )I

5' IL

where L = Lc or C and n is the interior normal along L. The Green's

function satisfies

(V2 + k2 ) Gs (P, ') =- 6 (J, ') (A.5)

with boundary conditions chosen so as to simplify (A.1) as much as

possible. 3
To facilitate determination of the Green's function the original

problem of Figure A.1 is converted into an equivalent problem by

employing the equivalence principle. A perfectly conducting sheet is 3
placed in the aperture, and on this sheet equivalent source

distributions are placed on either side. Then, for the equivalent 3
problem in region I, application of Green's identity along with

Equations (A.3), (A.4) and (A.5) yields
aus aGS

h h
f (Gs (p,P') - (p') - us (a') -- (5,p')) dt'

La h h a

- I Gs(,,)1 j Jo } ds' + us (p) (A.6)

SI h jwc Mo  h 3
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IREGION I z

L Lo LC
// REGIO GI O -i-U

aI 0Lo L (A.7)

h 0

1

.. Figure A.1. Geometry for derivation of integral equations.

1

Choosing the boundary conditions

I--aGh--1

1 " O= 0on L a  (A.7)

* I

Gs becomes the half-space Green's function
hIG s (x,y;x',y') = -j/4 H( 2 ) (k J~xx')2 + (~,2

h o

j H(2) (k V(x-xI) 2 + (y+y,)2) (A.8)
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Assume the sources in region I to be z-directed electric and magnetic I
line sources for the soft and hard polarizations, respectively, located 3
at (xo,yo). Then from Figure A.1 and Equations (A.7) and (A.6),

Equation (A.6) becomes 3
I- a I

a (u s T )-r Gs (, '
Us ( ) u , ( ) + u r (d) f x' Ihhh-a a uh  IITu- p h (PP y=O+

(A.q)

where 3
iEo (2

us (P) = { H j H02° (k /X-Xo)2 + y-y0 )2) (A.1Oa) 3
-E° H 2 )2)

us (p) H ' H(') (k x-x + Y+Y) 2 ) (A.IOh)

h 0 0 0

I
and where Gs is given by Equation (A.8). In this work the incident

h
field is assumed to he (locally) a plane wave, thus the asymptotic form 3
of Equation (A.1O) is used. This completes the derivation of the

integral equation for the fields in region I. I
For the equivalent problem in region II, application of Green's 3

identity and Equations (A.4) and (A.5) (there are no sources in this

region) yields 3
aus(p,') aGs

f (Gs (P,-') an -u s (s') (p,p')) dt'

L h ha

U S () (A.1) 3
h

I
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I
Choosing the boundary conditions as given by Equation (A.7) G becomes

3 the Green's functions for the enclosed cavity (derived in Appendix B).

Applying the boundary conditions Equation (A.11) becomesi
u (P) f 3uh dx (A.12)

-a a _y (s') Gh (P,5,)

i Where G is the cavity Green's functions. This completes the derivation

of the integral equation for the fields in region II.

I
i
I
I
i
I

I
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APPENDIX B 

DERIVATION OF THE CAVITY GREEN'S FUNCTIONS 3

The cavity Green's function for the geometry of Figure 2.3 is I
easily derived by the method of separation of variables. The Green's

functions satisfy

32 + 3 + k2 Er Pr) G5 (x,y;x',y') = -(x-x') 6\y-y') (R.1)

with the boundary conditions I

3Gh =0 on C (9.2)

where C is the perimeter of the cavity defined by x=-a, x=a, y=-b, y=O

and n is the interior normal on C. Consider the separation of variables

[2011

Gs  (x,y;x',y') = K Xs  (x,x') - Ys (y,y') (9.3)
h h h 3

where K is a linear operator such thal Equation (R.3) is a solution to

Equation (B.1). Substituting (9 .3) into (9.1) suggests the ordinary 3
differential equations

3-jx' + x) Xs (x,x') = -6(x-x') (R.4a)

32 h

(ay2 + xy) YA (y,y') = -6(y-y') (9.4h)

I

I



with the boundary conditions

dXh = 0 on x=-a, x=a (9.5a)1-_

II

and where

S+ A = k2 r Pr (B.6)x y

Note that k is the free-space wavenurber.

Eigenfunction representations for X and Y are given by [211

I m(x) *('
X(x,x'; -) = .S x " m (B.7a)

* m

4'n(Y) *n(Y')
Y(y,y', Ay) : y X n (R.7h)

n

where the om(x)}, {n (y)} are complete sets of orthonormal

eigenfunctions arising from

3 x) 0 (B.8a)
(d + xm) *n(Y) : (R.Rb)

I
and the appropriate boundary conditions. Consideration of the form of

Equation (R.7) leads to the choice of linear operator
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K = K f ... dX (B.9a)
Cxx

or

K = K I ... dX (B.9b)

Cy Y

For this problem the constant K is easily shown to be

- : (B.1O)

Note that the paths of integration, Cx and Cy, encircle the

singularities of X and Y, respectively. From Equations (B.7a) and

(B.9a), Equation (B.3) can be shown to reduce to

G(x,y;x',y') - I m(x )  m(x ') " Y(Y,Y';Xm )  • (B. lla)

m

If, instead, Equations (B.7b) and (B.9b) are used the result is

G(x,y;x',y') = *,n(y) *n(y') - X(x~x';Xn) . (B.llb)

n

Consider first the form of the Green's function given by Equation

(B.11b). The orthonormal eigenfunctions arising from Equation (B.8b)

with the boundary conditions

= 0 on y=-b,O (B.12)
ayU

are

*i~y ()I I Sin Ab
h _ B.1 13)

4 ' h ~et (y ~Cosb
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where t is an integer and cto is given by Equation (2.13c). In

Equations (B.11b) X(x,x') is determined from Equations (9.4a) and (B.6)

with

y = (R.14)

The solution for X(x,x') is constructed in two intervals and the

properties of the Green's function at x=x' are used to determine the

arbitrary coefficients involved. That is,

I=J(x<;xy) - T(x>;,X)(
W(Tl) (B.15)

where U and T are independent solutions of

d2 + ,k2.C2U(x)

(r - +(k2  
r r - -- -)) { (x } 0 (B.16)

and the constant W is (for Equation (R.16))

W(T,U) = T(x) I'(x) - T'(x) * li(x) (R.17)

Solutions to Equation (B.16) are

5~F IS(X)J sin-(a+x) 1  F.-

u Ts(x)_ sin-y( a-x)_

for the soft polarization and

I-Uh(x)-I I- cosy(a+x)-I= (B19)

Th(x)_ I -cosy(a-x) I

for the hard polarization, where y is given by Equations (2.13a) and

(2.13h). The constant W is
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WS Y i sin2ya (B. 20)

for the soft and hard polarizations, respectively. From Equations

(B.18), (B.19) and (8.20), Equation (B.15) may be written in the form3

-csc2ya
x x =' 2Y [cosy(2a.-Ix-x'I) ; cosy(x+x')] .(B.21)5

Finally, (B.llb), (B.13) and (B.21) yield the results given by Equations3

(2.12a) and (2.12b).

Consider now the form of the Green's function specified by3

Equation (B.lla). An orthonormal set of eigenfunctions is determined

from Equation (B.8a) with appropriate boundary conditions. EquationU

(B.4b) is then solved by the same method used to solve Equation (B.4a)3

in the previous derivation. The final results for the Green's functions

are3

G~x' ) = I cscyb Lit LitG XYXY) 2 sin -Z (a-x) sin 7- (a-x')3

*[cosy(b-Iy-y'l) -cos'r(b+y+y')] (B.22a)

G~(~y'-' I - cscyb iT tr
Gh~xy~x~') =Ta T-O-Ycos 2- (a-x) cos - (a-x')

*[cosy(b-Iy-y'l) + cosy(b+y+y')l (B.22b)3

where__ _ _3

'2n L2 2ak
k2 C r Wr - (T) Re (er rd (B.23a)3

Y i2 2ak-j - _ k2 C~ X K e (rUr . (B.23b)I
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APPENDIX C

DERIVATION OF Z,.

In this appendix we derive expressions for the elements of the

impedance matrices of the solutions presented in this thesis. Consider

first the hard polarization. From Equations (3.8) and (2.7), let

a a j1 (2),-xl
mn f [ 0 (k Gh (xx')] m(x') w(x) dx'dx

-a -a 
(C.1)

where m=Mn and w=Wm and Gh is given by Equation (?.12b). Now consider

just the first term in Equation (C.). Let

f f j/2 H(2)(klx-x'l) m(x') w(x) dx'dx . (C.2)

-a -a

This expression may be reduced to a single integral over the Hankel

function through the coordinate rotation (the so-called Popovich

transformation)

u : 
(C.3a)

u' x: x' (C.3b)

The resulting integral is

/-a V _-Iul (2) u'-u u'+u(C4
Zu f - j/2 Ho  (/klul) m' -2 w 2 du'du (C.4)
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From Equations (3.13) and (3.30) we see that the basis functions and I
weighting functions are simply exponentials. Thus, let m

m(x') = ejfx' (C.5a) I
w(x) = ejgx (C.5b)

Substituting Equations (C.5) into Equation (C.4) and evaluating the I
integral over u', 3

a (2) sin[(f+g) (a-u)]Zu = 4j 0f H. (2ku) cos(f-g)u f+ u du . (C.6)

For ku near zero the small argument form of the Hankel function [171,

H 0 (kp) - 1 - j tn 2 kP + 0 (C.7)

where y = 1.781, is used so that the singularity at the origin may be

integrated out. Substituting (C.7) into (C.6) for u 4 .05 yields the 3
approximate result,

IAU Au sin[(f+g)(a-) 2 ykAu
ZH 0  4jcos[(f-g)A_ f+g [1- -n e u

(C.7.)

For ku large (2ku>5) the large argument form of the Hankel function, as I
given by Equation (2.8.1), is used to express most of Equation (C.6) in 3
terms of the complex error function [17],

2 1 .t3

erfz = 7 -f e dt , (C.8)
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by employing the relations

e-YX

f 7- dx = litry erf 'y-x (C.9a)

erf /7 v'x- e Y x

f e ''dx = i/y 2 - y (C.9b)

For f+g * 0 the relevant portion of Equation (C.6) becomes

1 ja j j(f+g)a a (e-J2fu + e -j2gu) du

0.4 0.4

a e-j2ku
"eJ(f+g)a f -u . 2fu + e j 2 g u ) du (C.10)

0.4

which is easily evaluated with Equation (C.9a). For f+g=O the

corresponding result is

,a a e j2ku
u2j i (a-u) " eJ(f-g)u + e'J(f-g)u) du

(C.11)

which is easily evaluated with Equations (C.9a) and (C.9b). The

remaining portion of the integration in Equation (C.6), from u=.05 to

u=O.40, is evaluated numerically by the trapezoidal rule.

Efficient code for computation of the Hankel function and complex

error function, as well as an efficient program for complex matrix

inversion, were provided by Prof. J.H. Richmond. These routines are

discussed in [12].
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Next we consider the second term in Equation (C.1.), denoted ZL,

where

a a
Z1L r f _f Gh(x,x') m(x') w(x) dx'dx . (C.12) 3

-a -a

Substituting Equations (C.5a), (C.Sh) and (?.1?b) evaluated at y=y'=O I
into Equation (C.12), the resulting double integral may he evaluated in

a straight forward manner. The resulting sum is

Cr sin(f+g)a - 1 1
ZL L 4 f h f+g = t "

- csc2ya 1 sin(y+g)a 3
- 4 c £ o y2 f 2  sin(y+f)ar =0 CLYY_2 -Y+g

si n(y -g )a--7

- sin(y-f)a -g _i (C.13)

where y is a function of z and is given by Equation (2.13). The first

sum in this expression may he put in closed form through the use of the i
relation [221

t 2 _a2  =---j cot Wa (C.14)

Thus, the first sum in (C.13) becomes

1 1 b cot(b I k2 crUrf 2 )

Co f22 /k-crUrf 2  •(C.5)

For the cavity depths of interest in this work (< 1/4 wavelength) only a 3
few terms of the second sum in Equation (C.13) are needed for

I
go I



convergence, regardless of cavity width. Thus, with the use of Equation

(C.15) a highly convergent formulation of ZL has been achieved.

An equivalent expression for ZL may be obtained by using the

alternative form of the cavity Green's function given by Equation

(B.22b). Substituting this expression evaluated at y=y'=O, along with

Equations (C.5a) and (C.5b), into (C.12) yields the result

r cotyb sin(f+)a sin(g+p)a
= £O Y "+P g+pI =0

sin(--p)aI + sin(f-p)a sin(g+p)a sin(g-p)a
-P _ f-p _ g+p (-1) p

(C.16)

where Y is given by Equation (B.23) and

p (C.17)

I No convenient method was found for reducing any portion of the sum in

Equation (C.16) to closed form, making this representation of ZL far

l less convergent. The number of terms required in the summation is

Idirectly proportional to the width, and is typically equal to 10-15

times the width in wavelengths.

Now consider the soft polarization. In view of Equations (3.8) and

(2.8) let

a a 32
2u 0 ___H__k - m(x') w(x) dx'dx
-a -a y = 0+
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where m(x') and w(x) are basis and weighting functions such that I
m (-a)- 0 (C.19a)

w (±a)1 (C.19b)

From the differential equation which the 2-D half-space Green's function

satisfies, and noting that y*y', we obtain the relation 3
2  ~ 32 HC.2)

( 2 ) (kp- 'I) = -(3x + k2 ) H () (k _p'I) (C.20)~I

where IP-P'I is given by Equation (2.3). Substituting this into

Equation (C.18) we then integrate by parts to remove the derivatives on m

the Hankel function. The end-point terms resIting from this integration 3
can be shown to vanish from a consideration of the ege condition and the

small argument of the Hankel function, as given by Equations (2.14) and 3
(C.7), respectively, and from the relation I

lim xt Xnx = 0 , t > 0 . (C.21)
X*OI

The resulting form of Zu is

Zu = -k2 f f H (2)(klx-x'l) m(x') w(x) dx'dx
-a -a 3
a a (2)m w- -a HI (klx-x't) i- (x) (x) dx'dx (C.22)-a -a 0"

From Equations (3.15) and (3.22) it is apparent that the basis and 3
weighting functions are a sum of exponentials. Thus, the evaluation of

Zu for the soft polarization is fundamentally the same as for the hard I
polarization. I
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I Finally, consider the second term in Equation (2.8). Let

1 a a a2

-a -a r [Tjy-a G (X.y;X~y' m(x')w(x)dx'dx (C.23)

I - Iy =0--

where m(x') and w(x) satisfy Equation (C.19). Substituting Equation

1' (2.2) into (C.23) yields

Z 2 csc2ya 2 Cos tiW Co (C.24)

L urbT Y, h h *

I where

I f f [cosy(2a-tx-x'I) - cosy(x+x')] m(x')w(x) dx'dx (C.7-5)

-a -a

and Y is a function of £ as given by Equation (2.13). To obtain a

convergent summation Equation (C.25) must be integrated by parts, which

yields the result

1 a a am(x') aw(x)
I = y7 f f [cosy(2a-lx-x'I) + cosy(x+x')] ax ax dx'dx

-a -a

2sin~ya a (.6Y f M(X)w(x) dx .(.6

-a

Reecalling that m(x') and w(x) are a sum of exponentials for this

polarization, we substitute Equations (C.5) into Equation (C.26) and

I evaluate the integrals in a straightforward manner. Employing the

I rel ation 1

tOD b cos Y h osb 6y- (C.27)
t =0

93



m
I

along with Equation (C.14), and noting that y*y', Equation (C.24)

becomes |
o f2 csc2ya 1 1

z L= ZL- 4  2 rb' {Z t-. y_-i2 ;z-

[sin(y+f)a sin(y+g)a sin(Y-g)a 3
yg - sin(y-f)a "yg ] , (C.28)

where 3
0 2 sin(f+g)a - 2  Ur*f2

z L r f~ L f r r

r r f r rr

A second form for ZL is obtained by employing the alternative formm

of the cavity Green's function given by Equation (B.22b). Substituting

this expression into Equation (C.23) and noting that y*y', ZL becomes 3
a= Ycotyb - I , (C.30)

where

I = f f sin p(a-x') sin p(a-x) m(x') w(x) dx'dx (C.31)
-a -a 3

and p is given by Equation (C.17). Integrating by parts, (C.31) becomes 3
1 a a am(x') aw(x)

I= f cos p(a-x') cos p(a-x) r -- dx'dx . (C.32)
-a -a

Substituting Equations (C.5) into (C.33) and evaluating the double

integrals, Equation (C.32) is substituted into (C.30) and ZL becomes I

9
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y zcotyb sin(f+p)a sin(g+p)a
Z= LOr a = f+p . (-1) g+p

I - -II - sin g-p)a sisfpi si~gpg+ g p + f-pa Isng+p~a + (-1) g )fP ~ -p

(C.33)

where y is given by Equation (B.23) and p is given by Equation (C.17).

I Equations (C.28) and (C.33) possess the same convergance properties

that the corresponding hard polarization equations have. Thus,

Equations (C.28) and (C.29) yield a far more convergent representation

than does Equation (C.33) for wide cavities.

i
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